最全的电脑开关电源维修图解

手机日志

CPU可以带着我们在复杂的数码世界里飞速狂奔,一块超酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块发烧级的声卡更能带领我们进入那美妙的音乐殿堂,一个强劲而稳定工作的电脑电源,则是我们的计算机能出色工作的必要保证。

 直线吹风散热快 硕泰克BTX准系统评测  计算机300W开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。

 

  一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块超酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块发烧级的声卡更能带领我们进入那美妙的音乐殿堂,一个强劲而稳定工作的电脑电源,则是我们的计算机能出色工作的必要保证。

  计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。

 

  首先,我们要知道计算机开关电源的工作原理。电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。

  

  

  

  此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。通过对多台电源的维修,总结出了对付电源常见故障的方法。

 

  

  一、在断电情况下,“望、闻、问、切”

  由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。

 

  

  用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管VT1、VT2击穿。

  然后检查直流输出部分。脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。

 

  二、加电检测

  检修ATX开关电源,应从PS-ON和PW-OK、+5V SB信号人手。脱机带电检测ATX电源待机状态时,+5V SB、PS-ON信号高电平,PW-OK低电平,其他电压无输出。ATX电源由待机状态转为启动受控状态的方法是:用一根导线把ATX插头14脚PS-ON信号,与任一地端3、5、7、13、15、16、17中的一脚短接,此时PS-ON信号为零电平,PW-OK、+5V SB信号为高电平,开关电源风扇旋转,ATX插头+3.3V、+5V、+12V有输出。

  在通过上述检查后,就可通电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。一般来讲应重点检查一下电源的输入端,开关三极管,电源保护电路以及电源的输出电压电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量TL494的4脚电压,正常值应为0.4V以下,若测得电压值为+4V以上,则说明电源的处于保护状态下,应重点检查产生保护的原因。由于接触到高电压,建议没有电子基础的朋友要小心操作。

  三、常见故障

  1.保险丝熔断

  一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这些元器件有无击穿、开路、损坏等。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出。如果没有发现上述情况,则用万用表进行测量,如果测量出来两个大功率开关管e、 c极间的阻值小于100kΩ,说明开关管损坏。其次测量输入端的电阻值,若小于200kΩ,说明后端有局部短路现象。

  2.无直流电压输出或电压输出不稳定

  如果保险丝是完好的,可是在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。这时,首先用万用表测量系统板+5V电源的对地电阻,若大于0.8Ω,则说明电路板无短路现象;然后将电脑中不必要的硬件暂时拆除,如硬盘、光盘驱动器等,只留下主板、电源、蜂鸣器,然后再测量各输出端的直流电压,如果这时输出为零,则可以肯定是电源的控制电路出了故障。

  3.电源负载能力差

  电源负开能力差是一个常见的故障,一般都是出现在老式或是工作时间长的电源中,主要原因是各元器件老化,开关三极管的工作不稳定,没有及时进行散热等。应重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏、晶体管工作点未选择好等。

  4、通电无电压输出,电源内发出吱吱声。

  这是电源过载或无负载的典型特征。先仔细检查各个元件,重点检查整流二极管、开关管等。经过仔细检查,发现一个整流二极管1N4001的表面已烧黑,而且电路板也给烧黑了。找同型号的二极管换下,用万用表一量果然是击穿的。接上电源,可风扇不转,吱吱声依然。用万用表量+12V输出只有+0.2V,+5V只有0.1V。这说明元件被击穿时电源启动自保护。测量初级和次级开关管,发现初级开关管中有一个已损坏,用相同型号的开关管换上,故障排除,一切正常。

 

  5、没有吱吱声,上一个保险丝就烧一个保险丝。

  由于保险丝不断地熔断,搜索范围就缩小了。可能性只有3个:1、整流桥击穿;2、大电解电容击穿;3、初级开关管击穿。电源的整流桥一般是分立的四个整流二极管,或是将四个二极管固化在一起。将整流桥拆下一量是正常的。大电解电容拆下测试后也正常,注意焊回时要注意正负极。最后的可能就只剩开关管了。这个电源的初级只有一个大功率的开关管。拆下一量果然击穿,找同型号开关管换上,问题解决。

  其实,维修电源并不难,一般电源损坏都可以归结为保险丝熔断、整流二极管损坏、滤波电容开路或击穿、开关三极管击穿以及电源自保护等,因开关电源的电路较简单,故障类型少,很容易判断出故障位置。只要有足够的电子基础知识,多看看相关报刊,多动动手,平时注意经验的积累,电源故障是可以轻松检修的。

  

  电脑电源的接口

  

图-电源输出插头图

ATX电源排针(Pin)定义

引脚号引脚名引脚功能描述

1

3.3V

提供 3.3V 电源

2

3.3V

提供 3.3V 电源

3

GND

地线

4

5V

提供 5V 电源

5

GND

地线

6

5V

提供 5V 电源

7

GND

地线

8

PW-OK

Power OK,指示电源正常工作

9

5VSB

提供 5V Stand by电源,供电源启动电路用

10

12V

提供 12V 电源

11

3.3V

提供 3.3V 电源

12

-12V

提供 -12V 电源

13

GND

地线

14

PS-ON

电源启动信号,低电平-电源开启,高电平-电源关闭

15

GND

地线

16

GND

地线

17

GND

地线

18

-5V

提供 -5V 电源

19

5V

提供 5V 电源

20

5V

提供 5V 电源

上表为电脑ATX主板电源排针引脚定义



  健全的PC电源中都具备9种颜色的导线(目前主流电源都省去了白线),它们的具体功能相信还有不少网友搞不清楚,今天就给大家详细的讲解一下。

 

  黄色:+12V

  黄色的线路在电源中应该是数量较多的一种,随着加入了CPU和PCI-E显卡供电成分,+12V的作用在电源里举足轻重。

  +12V一直以来硬盘、光驱、软驱的主轴电机和寻道电机提供电源,及为ISA插槽提供工作电压和串口设备等电路逻辑信号电平。+12V的电压输出不正常时,常会造成硬盘、光驱、软驱的读盘性能不稳定。当电压偏低时,表现为光驱挑盘严重,硬盘的逻辑坏道增加,经常出现坏道,系统容易死机,无法正常使用。偏高时,光驱的转速过高,容易出现失控现象,较易出现炸盘现象,硬盘表现为失速,飞转。目前,如果+12V供电短缺直接会影响PCI-E显卡性能,并且影响到CPU,直接造成死机。

  蓝色:-12V

  -12V的电压是为串口提供逻辑判断电平,需要电流不大,一般在1A以下,即使电压偏差过大,也不会造成故障,因为逻辑电平的0电平从-3V到-15V,有很宽的范围。

  红色:+5V

  +5V导线数量与黄色导线相当,+5V电源是提供给CPU和PCI、AGP、ISA等集成电路的工作电压,是电脑中主要的工作电源。目前,CPU都使用了+12V和+5V的混合供电,对于它的要求已经没有以前那么高。只是在最新的Intel ATX12V 2.2版本加强了+5V的供电能力,加强双核CPU的供电。它的电源质量的好坏,直接关系着计算机的系统稳定性。

  白色:-5V

  目前市售电源中很少有带白色导线的,白色-5V也是为逻辑电路提供判断电平的,需要电流很小,一般不会影响系统正常工作,基本是可有可无。

  橙色:+3.3V

  这是ATX电源专门设置的,为内存提供电源。最新的24pin主接口电源中,着重加强了+3.3V供电。该电压要求严格,输出稳定,纹波系数要小,输出电流大,要20安培以上。一些中高档次的主板为了安全都采用大功率场管控制内存的电源供应,不过也会因为内存插反而把这个管子烧毁。使用+2.5V DDR内存和+1.8V DDR2内存的平台,主板上都安装了电压变换电路。

  紫色:+5VSB(+5V待机电源)

  ATX电源通过PIN9向主板提供+5V 720MA的电源,这个电源为WOL(Wake-up On Lan)和开机电路,USB接口等电路提供电源。如果你不使用网络唤醒等功能时,请将此类功能关闭,跳线去除,可以避免这些设备从+5VSB供电端分取电流。这路输出的供电质量,直接影响到了电脑待机是的功耗,与我们的电费直接挂钩。

  绿色:P-ON(电源开关端)

  通过电平来控制电源的开启。当该端口的信号电平大于1.8V时,主电源为关;如果信号电平为低于1.8V时,主电源为开。使用万用表测试该脚的输出信号电平,一般为4V左右。因为该脚输出的电压为信号电平。这里介绍一个初步判断电源好坏的土办法:使用金属丝短接绿色端口和任意一条黑色端口,如果电源无反应,表示该电源损坏。现在的电源很多加入了保护电路,短接电源后判断没有额外负载,会自动关闭。因此大家需要仔细观察电源一瞬间的启动。

  灰色:P-OK(电源信号线)

  一般情况下,灰色线P-OK的输出如果在2V以上,那么这个电源就可以正常使用;如果P-OK的输出在1V以下时,这个电源将不能保证系统的正常工作,必须被更换。这也是判断电源寿命及是否合格的主要手段之一。

  认识导线种类作用是DIY玩家的必修课,是菜鸟用户晋级的必经之路,大家掌握了电源导线种类可以更清晰的认识电源的输出规格,方便大家选购电源和排除故障。             图解电脑电源电路 - wdyxh_20000@126 - 物业水、电维修知识博客 图解电脑电源电路 - wdyxh_20000@126 - 物业水、电维修知识博客 图解电脑电源电路 - wdyxh_20000@126 - 物业水、电维修知识博客 图解电脑电源电路 - wdyxh_20000@126 - 物业水、电维修知识博客  图解电脑电源电路 - wdyxh_20000@126 - 物业水、电维修知识博客

图解电脑电源电路 - wdyxh_20000@126 - 物业水、电维修知识博客

                                                                                                                                                    电源内部结构认识及维修知识;

电脑电源的内部结构:

电脑电源

电脑电源一次侧和二次侧:

通常PC电源在两个散热片之间会有三个变压器,当然不是每一种的拓扑结构都是这样,主开关变压器是最大的那个,中等体积的变压器(待机变压器)用来产生+5Vsb输出,而最小的变压器(推动变压器)用于PWM控制电路,用来隔离二次侧和一次侧电路。但是要注意,在一些电源里不使用变压器作为一、二次侧电路,而使用一个或几个光耦来分隔,所以在这些电源里你可能只找到两个变压器。

在一次侧散热片上你能找到主开关管,如果电源配备了主动PFC,还包括PFC开关管和配套的快恢复二极管。一些厂商会将主动PFC放在一个独立的散热片上,在这些电源里你在一次侧找到两个散热片。在二次侧散热片上你能找到若干个整流管。它们内部是两个封装在一起的整流用功率二极管。  你还会发现一些属于输出滤波级的小号的电解电容与线圈,找到它们你就找到了二次侧。一个确定一次侧与二次侧更简单的办法就是看输出的接线组连接在二次侧而输入接线连接在一次侧。

 电脑电源一级EMI和二级EMI滤波电路

EMI滤波电路的主要作用是保护电源及设备而起到滤除外界电网的高频脉冲对电源的干扰,也能抑制电源产生的杂波传导干扰市电。

一个完整的一级和二级EMI电路应该是这样的:

电脑电源

上图中的电路图和下面实物对应部分参看一下就是,不懂没关系,日后有兴趣再继续深入学习的话自然会了解的。

简单说说标注字母所代表的元件:RV1代表压敏电阻(MOV);C1和C2代表Y电容,一般都标有安全认证标志(如UL、CSA等标识)和耐压AC250V或AC275V字样。;L1和L2代表铁氧体线圈;C3是X电容;(X电容是并联在市电输入火线和零线之间的任何电容,Y电容是成对出现的,需要串联连接到火线和零线之间并将两个电容的中点接地,也就是连接到电源外壳上,因而对于市电输入而言它们是并联的。 ) 

电脑电源高压滤波电容在一些电源的实物拆解图中,我们是否会注意到一点,高压滤波电容有的是用一对,而有的只用一个。原因在于:对于半桥拓扑的电源,一次侧的两颗大电容的容量要求比较高。无PFC或被动PFC的电源需要倍压输入电路,因而一次侧大电容是两颗200V左右串联的规格;而配备主动PFC的电源,PFC电路本身就能完成升压功能,经过主动PFC电路输出的直流电压一般比较高,因而不需要倍压电路,电容是耐压值400V左右的规格。

电脑电源整流桥整流滤波电路由一个全桥和两个高压电解电容组成。全桥内部就是四个二极管,它负责把交流电转换成直流电。整流后的直流电波动很大,为了得到稳定的电压,需要用滤波电容滤波。全桥后面的是两个高压滤波电容,其作用是虑除电流中的杂波,输出平稳的直流电,滤波电容的容量大小和滤波效果有很大关系。通常我们能看到一对高压电解电容一般在470 μ F(额定250W)或者的电源采用了680 μ F (额定300W),而且多半是采用被动PFC或者没有PFC。

电脑电源被动PFC和主动PFC

电脑电源
300W开关电源计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。楼上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。

主板电源接口 图解


2010年06月23日 - 雪泪 - 雪泪的博客

20-PIN ATX主板电源接口


2010年06月23日 - 雪泪 - 雪泪的博客

4-PIN“D”型电源接口


2010年06月23日 - 雪泪 - 雪泪的博客

主板20针电源插口及电压: 
在主板上看: 
编号 输出电压 编号 输出电压 
1        3.3V       11    3.3V 
2        3.3V       12   -12V 
3          地         13    地 
4          5V       14   PS-ON 
5          地          15    地 
6          5V        16    地 
7          地         17    地 
8     PW+OK     18   -5V 
9     5V-SB       19    5V 
10      12V        20    5V

在电源上看: 
编号 输出电压 编号 输出电压 
20     5V          10    12V 
19     5V            9   5V-SB 
18    -5V            8   PW+OK 
17     地            7    地 
16     地            6    5V 
15     地             5    地 
14   PS-ON        4    5V 
13     地             3    地 
12   -12V           2   3.3V 
11   3.3V            1   3.3V 
可用万用电表分别测量。

另附:24 PIN ATX电源电压对照表



2010年06月23日 - 雪泪 - 雪泪的博客


2010年06月23日 - 雪泪 - 雪泪的博客


2010年06月23日 - 雪泪 - 雪泪的博客2010年06月23日 - 雪泪 - 雪泪的博客


ATX电源几组输出电压的用途

+3.3V:最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PSII电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从第二代奔腾芯片开始,由于CPU的运算速度越来越快,INTEL公司为了降低能耗,把CPU的电压降到了3.3V以下,为了减少主板产生热量和节省能源,现在的电源直接提供3.3V电压,经主板变换后用于驱动CPU、内存等电路。
         +5V:目前用于驱动除磁盘、光盘驱动器马达以外的大部分电路,包括磁盘、光盘驱动器的控制电路。
         +12V:用于驱动磁盘驱动器马达、冷却风扇,或通过主板的总线槽来驱动其它板卡。在最新的P4系统中,由于P4处理器能能源的需求很大,电源专门增加了一个4PIN的插头,提供+12V电压给主板,经主板变换后提供给CPU和其它电路。所以P4结构的电源+12V输出较大,P4结构电源也称为ATX12V。
         -12V:主要用于某些串口电路,其放大电路需要用到+12V和-12V,通常输出小于1A.。
         -5V:在较早的PC中用于软驱控制器及某些ISA总线板卡电路,通常输出电流小于1A.。在许多新系统中已经不再使用-5V电压,现在的某些形式电源如SFX, 
         FLEX ATX 一般不再提供-5V输出。在INTEL发布的最新的ATX12V 1.3版本中,已经明确取消了-5V的输出。
         +5V Stand—By, 
         最早在ATX提出,在系统关闭后,保留一个+5V的等待电压,用于电源及系统的唤醒服务。以前的PSII、AT电源都是采用机械式开关来开机关机,从ATX开始(包括SFX)不再使用机械式开关来开机关机,而是通过键盘或按钮给主板一个开机关机信号,由主板通知电源关闭或打开。由于+5V 
         Stand-by是一个单独的电源电路,只要有输入电压,+5VSB就存在,这样就使电脑能实现远程Modem唤醒或网络唤醒功能。最早的ATX1.0版只要求+5VSB达到0.1A,随着CPU及主板的功能提高,+5VSB 
         0.1A已不能满足系统的要求,所以INTEL公司在ATX2.01版提出+5VSB不低于0.72A。随着互联网应用的不断深入,一些系统要求+5VSB提供2A、3A,甚至更大的电流输出,以保障系统功能的实现,因此对电源提出了更高的设计要求。


ATX各线路输出电压值及对应导线的颜色

电脑电源上的输出线共有九种颜色,其中在主板20针插头上的绿色(POWER-ON)和灰色线(POWER-GOOD),是主板启动的信号线,而黑色线则是地线(G),其他的各种颜色的输出线的含义如下: 
  红色线:+5VDC输出,用于驱动除磁盘、光盘驱动器马达以外的大部分电路,包括磁盘、光盘驱动器的控制电路,在传统上CPU、内存、板卡的供电也都由+5VDC供给,但进入PII时代后,这些设备的供电需求越来越大,导致+5VDC电流过大,所以新的电源标准将其部分功能转移到其他输出上,在最新的Intel ATX12V 2.2版本加强了+5V的供电能力,加强双核CPU的供电。它的电源质量的好坏,直接关系着计算机的系统稳定性。

  黄色线:+12VDC输出,用于驱动磁盘驱动器马达、冷却风扇,或通过主板的总线槽来驱动其它板卡。在最新的P4系统中,由于P4处理器能源的需求很大,电源专门增加了一个4PIN的插头,提供+12V电压给主板,经主板变换后提供给CPU和其它电路而不再使用+5VDC,所以P4结构的电源+12V输出较大。如果+12V的电压输出不正常时,常会造成硬盘、光驱、软驱的读盘性能不稳定。当电压偏低时,表现为光驱挑盘严重,硬盘的逻辑坏道增加,经常出现坏道,系统容易死机,无法正常使用。偏高时,光驱的转速过高,容易出现失控现象,较易出现炸盘现象,硬盘表现为失速,飞转。随着加入了CPU和PCI-E显卡供电成分,+12V的作用在电源里举足轻重。目前,如果+12V供电短缺直接会影响PCI-E显卡性能,并且影响到CPU,直接造成死机。

  橙色线:+3.3VDC输出,是ATX电源设置为内存提供的电源。以前AT电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从PII时代开始,INTEL公司为了降低能耗,把CPU、内存等的电压降到了3.3V以下。在新的24pin主接口电源中,着重加强了+3.3V供电。该电压要求严格,输出稳定,纹波系数要小,输出电流大,要20安培以上。一些中高档次的主板为了安全都采用大功率场管控制内存的电源供应,不过也会因为内存插反而把这个管子烧毁。使用+2.5V DDR内存和+1.8V DDR2内存的平台,主板上都安装了电压变换电路。

  白色线:-5VDC输出,5V是为逻辑电路提供判断电平的,需要的电流很小,一般不会影响系统正常工作,出现故障机率很小,在较早的PC中用于软驱控制器及某些ISA总线板卡电路.。在许多新系统中已经不再使用-5V电压,现在的某些形式电源一般不再提供-5V输出。-在INTEL发布的标准ATX12V 1.3版本中,已经明确取消了-5V的输出,但大多数电源为了保持向上兼容,还是有这条输出线。

  蓝色线:-12VDC输出,是为串口提供逻辑判断电平,需要电流较小,一般在1安培以下,即使电压偏差较大,也不会造成故障,因为逻辑电平的0电平为-3到-15V,有很宽的范围。在目前的主板设计上也几乎已经不使用这个输出,而通过对+12VDC的转换获得需要的电流。

  紫色线:+5V Stand—By,最早在ATX提出,通过PIN9向主板提供+5V 720MA的电源,在系统关闭后,保留一个+5V的等待电压,用于电源及系统的唤醒服务。这个电源为WOL(Wake-up On Lan)和开机电路,USB接口等电路提供电源。如果你不使用网络唤醒等功能时,请将此类功能关闭,跳线去除,可以避免这些设备从+5VSB供电端分取电流。这路输出的供电质量,直接影响到了电脑待机是的功耗,与我们的电费直接挂钩。

  绿色线:PS-ON(电源开关端)通过电平来控制电源的开启。当该端口的信号电平大于1.8V时,主电源为关;如果信号电平为低于1.8V时,主电源为开。使用万用表测试该脚的输出信号电平,一般为4V左右。因为该脚输出的电压为信号电平。这里介绍一个初步判断电源好坏的土办法:使用金属丝短接绿色端口和任意一条黑色端口,如果电源无反应,表示该电源损坏。现在的电源很多加入了保护电路,短接电源后判断没有额外负载,会自动关闭。因此大家需要仔细观察电源一瞬间的启动。

  灰色:PG(POWER-GOOD电源信号线)一般情况下,灰色线PS的输出如果在2V以上,那么这个电源就可以正常使用;如果PS的输出在1V以下时,这个电源将不能保证系统的正常工作,必须被更换。这也是判断电源寿命及是否合格的主要手段之一。

  很明显,要考量一个电源的功率支持能力,最主要就是要看红色、黄色、橙色三条线的最大输出能力。

电脑的ATX电源输出电压对照表 
计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。主板电源分配图解


2010年06月23日 - 雪泪 - 雪泪的博客


2010年06月23日 - 雪泪 - 雪泪的博客

文章评论