2015年福州市初中毕业会考与高中招生考试说明 语数英
个人日记
根据教育部《基础教育课程改革纲要(试行)》、《关于初中毕业、升学考试改革的指导意见》精神及福建省2015年初中学业考试大纲要求,依据各学科的课程标准,结合我市实际,组织编写了2015年福州市初中毕业会考与高中招生考试说明,现以电子文本的形式下发。望各学校按照本考试说明组织复习教学,切实减轻学生课业负担,提高教学质量。
附件:2015年福州市初中毕业会考与高中招生考试说明
福州市教育局
2015年2月2日
附件:
2015年福州市初中毕业会考与高中招生考试
语文学科考试说明
一、命题依据与原则
㈠ 命题依据
以教育部制订的《全日制义务教育语文课程标准(2011版)》为依据,参照《2015年福建省初中学业考试大纲(语文)》的精神,结合福州市初中语文教学的实际情况命题。
㈡ 命题原则
1命题按照《语文课程标准》中课程的目标和内容,兼顾不同层次学习水平和不同发展状态的学生,让每个学生都能最大限度地发挥自己的水平。
2.命题以全面考查学生的语文素养为宗旨,不仅考查学生的语文知识、能力水平,还要关注学生掌握语文学习方法的情况以及情感态度价值观的发展状况。
3.重视考查语言文字的实际运用能力,关注语言文字这一特殊信息载体的人文价值导向,关注学生在语文学习过程中的感悟、体验和审美活动,体现语文学科工具性与人文性统一的特点。
4.现代文阅读的材料全部选自课外,选用的文字材料既要文质兼美,又要适合初中生阅读;文言文阅读的材料选自课内(含自读课文)。
5.试题应符合学生生活的实际情况,与学生的已有经验和身心发展水平相适应。通过测试发挥学生的潜能。
6.设计一些开放性的试题,这类试题不规定统一的标准答案,鼓励学生发表独立见解,作出自己富有个性的解答。
二、考试内容与要求
㈠ 积累与运用
1.能熟练地使用字典、词典,识记3500个常用汉字,能规范书写。正确理解、运用常见常用的词语(包括成语、熟语)。
2..能辨析语序不当、搭配不当、成分残缺、冗繁赘余、结构混乱、表意不明、不合逻辑等常见语病。
3.了解常用的修辞手法(比喻、拟人、夸张、排比、对偶、反复、设问、反问),体会它们在具体语言环境中的表达效果,并能灵活运用。
4.理解、积累课文古诗词的精要;背诵、默写规定的古诗文60篇(见附录)。
5.课外名著必读书目:(1)《西游记》(2)《水浒》(3)《朝花夕拾》(4)《钢铁是怎样炼成的》(5)《简爱》(6)《格列佛游记》
6.在语文综合实践和生活实际中运用语言。
㈡ 阅读
1.文言文
(I)顺畅地朗读课文,句中语意停顿正确。
(2)理解文中字词的意思。
(3)理解并翻译课文的句子。
(4)理解文章的内容和作者的思想、感情以及写法的主要特点。
2.现代文
(1)把握阅读材料的大意,迅速捕捉阅读材料中的重要信息。
(2)整体感知文章的内容,领悟作者的观点、态度和思想感情。
(3)把握文章的结构,理清作者的思路。
(4)体味、推敲重要词句在具体语言环境中的意义和作用。
(5)在阅读中了解叙述、描写、说明、议论、抒情等表达方式及作用。
(6)领悟探究作品的内涵,从中获得对自然、社会、人生的有益启示。对作品的形象、情感、语言,能有自己的体验和评价。解读文本提出新颖独特的见解,能写出自己的阅读收获。
(7)阅读非连续性文本,能领会文本的意思,得出有意义的结论。
㈢ 写作
1.能用规范的语言文字表达自己对生活的思考认识和真实体验。
2.写作应符合题意,中心明确,思想健康,力求有创意的表达。
3.选用恰当的表达方式,文体明确,条理清楚、详略得当、文句通顺、书写工整,正确使用标点符号。
4.叙事具体细致,说明准确明了,议论有理有据。
5.运用联想想象,丰富文章内容。
6.能根据文章的基本内容和自己的想象,进行扩写、改写。
三、考试形式与试卷结构
㈠ 考试形式与试题难度
考试采用闭卷笔试的形式,试卷满分为150分,考试时间为120分钟。全卷难度为0.8左右。易、中、难试题的比例约为8:l:l。
㈡ 试卷结构与分值比例
1.积累与运用部分:40分左右。其中古诗文默写12分,名著阅读8分左右,综合性学习8分左右。
2.阅读部分:45分左右。其中文言文阅读18分左右,现代文阅读27分左右。
3.写作部分:65分(其中书写占5分)。
附录:要求背诵、默写的古诗文篇目
1.《论语》十则 《论语》
2.《孟子》两章 《孟子》
得道多助,失道寡助
生于忧患,死于安乐
3.记承天寺夜游 苏轼
4.出师表 诸葛亮
5.岳阳楼记 范仲淹
6.醉翁亭记、 欧阳修
7.三峡 郦道元
8.短文两篇
陋室铭 刘禹锡
爱莲说 周敦颐
9. 答谢中书书 陶弘景
10..大道之行也 《礼记》
11.《诗经》两首 《诗经》
关雎
蒹葭
12.春望 杜甫
13.渔家傲·秋思 范仲淹
14.江城子·密州出猎 苏轼啊
15.武陵春(风住尘香花已尽) 李清照
16.破阵子(醉里挑灯看剑) 辛弃疾
17.饮酒(结庐在人境) 陶渊明
18. 闻王昌龄左迁龙标遥有此记 李白
19.茅屋为秋风所破歌 杜甫
20. 白雪歌送武判官归京 岑参
21.己亥杂诗 龚自珍
22.酬乐天扬州初逢席上见赠 刘禹锡
23.天净沙 秋思 马致远
24. 赤壁 杜牧
25.水调歌头(明月几时有) 苏轼
26.山坡羊·潼关怀古 张养浩
27.使至塞上 王维
28.望岳 杜甫
29.登飞来峰 王安石
30.过零丁洋 文天祥
31.观沧海 曹操
32. 次北固山下 王湾
33. 钱塘湖春行 白居易
34 . 行路难 李白
35.月下独酌 李白
36.左迁至蓝关示侄孙湘 韩愈
37.雁门太守行 李贺
38.卜算子·咏梅 陆游
39.泊秦淮 杜牧
40.醉花阴(薄雾浓云愁永昼) 李清照
41.南乡子·登京口北固亭有怀 辛弃疾
42.送杜少府之任蜀州 王勃
43.登幽州台歌 陈子昂
44.望江南 温庭筠
45.归园田居(种豆南山下) 陶渊明
46.相见欢(无言独上西楼) 李煜
47.江南逢李龟年 杜甫
48.长歌行 汉乐府
49.望洞庭湖赠张丞相 孟浩然
50.黄鹤楼 崔颢
51.秋词 刘禹锡
52.渡荆门送别 李白
53.月夜 刘方平
54.滁州西涧 韦应物
55.登楼 杜甫
54.论诗 赵翼
56.过故人庄 孟浩然
57.早春呈水部张十八员外 韩愈
58.夜雨寄北 李商隐
59.浣溪沙(山下兰芽短浸溪) 苏轼
60.观书有感 朱熹
2015年福州市初中毕业会考与高中招生考试
数学学科考试说明
一、考试性质
初中数学学业考试是义务教育初中阶段的终结性考试,目的是全面、准确地反映在义务教育阶段初中毕业生数学学业水平.考试结果是衡量学生是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据.
二、命题依据
1.教育部制定的《全日制义务教育数学课程标准》(2011年版)(以下简称《课程标准》).
2.2015年福建省初中数学学业考试大纲.
3.福州市教育局颁布的考试要求及相关规定.
4.人教版义务教育教科书(七~九年级初中数学).
三、命题原则
1.体现数学课程标准的评价理念,落实《课程标准》所设立的课程目标;命题导向有利于促进初中数学教学,有利于改变学生的数学学习方式,提高学习效率;有利于后续阶段学生数学学习的可持续发展.
2.重视对学生数学学习中“四基”的评价,重视对学生数学思考能力、解决问题能力的发展性评价,重视对学生数学认识水平及数学素养的评价.
3.体现义务教育阶段数学课程基本理念,命题面向全体学生,在素材选取、考查内容、试卷形式等方面体现公平性、合理性.
4.试题背景具有现实意义.取材来自学生所能理解的生活现实,符合学生所具有的数学现实和其他学科现实.
5.试卷关注学生数学学习结果与过程的考查,加强对学生思维水平与思维特征的考查. 体现有效性.
四、考试目标
(一)数学基础知识和基本技能;
(二)数学思想方法;
(三)数学运算能力、抽象概括能力、逻辑推理能力、空间观念、统计观念、应用意识和创新意识.
1.基础知识和基本技能
1.1了解、理解、掌握、应用“数与代数”、“空间与图形”、“统计与概率”中的相关知识.
1.2直接使用“数与代数”、“空间与图形”、“统计与概率”中的相关知识,有程序、有步骤地完成判定、识别、计算、简单证明等任务.
1.3能对文字语言、图形语言、符号语言进行转译.
1.4能正确使用工具进行简单的尺规作图或画图(不要求写出作法或画法).
2.数学思想方法
2.1在解决数学问题中,运用函数与方程、数形结合、分类与整合、化归与转化、特殊与一般、或然与必然等数学思想方法.
2.2掌握待定系数法、消元法、配方法、整体代换等基本数学方法.
3.运算能力
3.1理解有关算理.
3.2能根据试题条件寻找并设计合理简捷的运算途径.
3.3能通过运算进行推理和探究.
4.抽象概括能力
4.1能发现一般性现象中存在的差异,能建立各类现象之间的数学联系.
4.2能分离出问题的核心和实质,把具体问题抽象为数学模型.
5.逻辑推理能力
5.1掌握演绎推理的基本规则和方法,能有条理地表述演绎推理过程.
5.2能用举反例的方式说明一个命题是假命题.
6.空间观念
6.1能根据条件画简单平面图形.
6.2能描述实物或几何图形的运动和变化.
6.3能从较复杂的图形中分解出基本图形,并能分析其中的基本元素及其关系.
6.4运用简单图形的性质揭示复杂图形的性质.
7.统计观念
7.1会收集、描述数据.
7.2会依据统计的方法对数据进行整理、分析,并得出合理的判断.
8.应用意识
8.1知道一些基本数学模型,并通过运用,解决简单的实际问题.
8.2能依据基本数学模型对简单的实际问题进行定量、定性分析.
9.创新意识
9.1能使用观察、尝试、实验、归纳、概括、验证等方式得到猜想和规律.
9.2会用已有的知识经验解决新情境中的数学问题.
五、考试内容
1.数与代数、空间与图形、统计与概率三个领域的考试内容及各层次认知水平与《课程标准》中相应内容的教学目标相同(建议各校认真研读《课程标准》,把握复习教学尺度). 其中《课程标准》中标有“*”的内容为选学内容,不做考试要求.这些内容的教学,各校可根据实际情况,酌情处理.
2.综合与实践的考试内容:以数与代数、空间与图形、统计与概率的知识为载体考查数学知识的综合应用、研究问题的方法.
以下各单元要求和建议,是学生后续学习的基础,是进入各级各类高中学习的必须要求.供各校复习教学时参考.
第一章 有理数
1.能够正确、迅速进行有理数的加、减、乘、除、乘方的简单混合运算,并能用规范格式书写.
2. 能够应用有理数的四则运算解决简单的实际问题.
3.理解运算律,并能合理运用,简化运算.
第二章 整式的加减
1. 能够用规范的格式书写整式的加减及代数式的求值问题.
2. 初步感受合情推理的思维方式.
3. 能够用整式加减法解决简单实际问题.
4. 理解符号所代表的数量关系,感受字母表示数的优越性,认识抽象概括的思维方法.
【建议】
1.作为后续学习的基础,要求熟练、准确地应用添括号、去括号法则解决整式计算、化简的问题.
2.从去括号与添括号的过程中体会整体代换的思想方法,并能灵活运用.
第三章 一元一次方程
1. 能够灵活运用等式性质进行方程的简单变形,简捷地解一元一次方程;
2. 在解方程中体会“转化”的思想方法;
3. 能够在以一元一次方程为背景的实际问题中读懂信息,能用符号语言表示数量关系;
4. 能够用一元一次方程的知识解释简单的实际问题;
5. 能够解含有字母系数的一元一次方程.
【建议】
1.引导学生观察题目结构,灵活运用方程的简单变形,提高解一元一次方程的能力.
2.在解决以一元一次方程为背景的实际问题过程中培养学生读取信息,分析问题的能力,逐步培养学生学会用符号语言表示数量关系的抽象能力和建立数学模型解决实际问题的能力.
3.学有余力的学生要理解等式性质2中“不为零”的严谨性和必要性.
第四章 几何图形初步
1. 能根据题意画出示意图.
2. 能初步使用几何语言有条理地表述简单推断、计算的过程.
第五章 相交线与平行线
1. 能够根据文字语言的要求,作出相应的几何图形;
2. 能从已学的定理、性质中找出条件和结论,理解条件和结论之间的因果关系
3. 在一道题目中,能够运用1—2个基本事实、定理进行推理论证,并能规范地表达.
第六章 实数
1.能够正确比较两个实数的大小;
2.理解实数之间可以进行四则运算,理解有理数的运算法则及运算律在实数范围内 的适用性.
【建议】
1.实数可分为正数、零和负数;也可以分为有理数和无理数. 分类与整合思想是初中数学一个重要的数学思想方法,应该不失时机地让学生感受分类的原则是不重不漏,并逐步掌握分类的标准.
2.《课程标准》对求实数绝对值的要求比《课标实验稿》高,在教学中要认真研究,落实新的要求.学有余力的学生应具有对绝对值内的字母进行分类讨论的能力(绝对值内最多只含有一个(一种)字母).
第七章 平面直角坐标系
1.能正确、熟练地画出直角坐标系;
2.体会并简单应用数形结合思想.
【建议】
在直角坐标系中,确定一个点的位置有两种基本方法:
(1)由这个点到横轴、纵轴距离确定;
(2)由这个点到原点的距离及一个特定的角度(如:方位角等)确定;
其它的问题可以转化为由这两种基本方法来解决.
第八章 二元一次方程组
1.能够根据题目的结构特征,灵活选用“代入法”或“加减法”解二元一次方程组;
2.在解方程组中体会“消元”的方法和“转化”的思想;
文章评论